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When a liquid evaporates under vacuum, its free surface is potentially unstable to 
local variations in evaporative flux. surface depressions being produced by the recoil 
force of the departing vapour and sustained convection in the liquid being driven by 
the shearing action of the vapour on the distorted liquid surface. For a binary 
mixture, local variations in evaporative flux may be produced by fluctuations in both 
surface concentration and temperature. With the aid of linear hydrodynamic-stability 
theory, this paper examines the extents to which key mass-transfer properties affect 
the interfacial stability of the system. The mass-transfer aspects that  distinguish this 
problem from its heat-transfer analogue centre on the dependence of relative 
volatility on temperature and composition as well as the importance of the bulk-flow 
term in Fick’s law. Results indicate that the stability criteria for interfacial 
convection are extremely sensitive to the difference in volatility between the two 
components, that the destabilizing effects of surface concentration and temperature 
on evaporative flux are additive in determining stability limits, and that for certain 
operating pressures spontaneous convection can only be induced by adverse con- 
centration gradients. Attention is limited to low-surface-tension mixtures for which 
there are no concentration effects on surface tension (Marangoni instability). 

1. Introduction 
When a liquid vaporizes, the density change that accompanies the phase transition 

gives rise to a discontinuity in the transport of linear momentum normal to the 
vapour-liquid interface. The result is a recoil force on the interface directed towards 
the liquid phase, whose magnitude is directly proportional to the square of the local 
evaporative flux and inversely proportional to the pressure (or density) of the vapour 
phase (see equation (5)). A linear stability analysis of a pure liquid evaporating into 
a partial vacuum reveals that local variations in this recoil force may disrupt the 
vapour-liquid interface and induce interfacial convection (Palmer 1976 ; Maheshri & 
Palmer 1979). Local fluctuations in surface temperature are accompanied by 
fluctuations in evaporative flux and recoil force. Regions of interface that are hotter 
and are exhibiting a higher evaporative flux are depressed owing to the associated 
increase in recoil force, and sustained liquid flows are driven by the resultant shear 
stress exerted on the walls of these craters by the departing vapour. Besides 
elucidating the basic features of this differential vapour recoil mechanism, the linear 
stability analysis indicates that vapour-recoil convection can be induced only if the 
ratio of liquid to vapour density is greater than lo6. Practically speaking, this means 
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that the operating pressure must be below 50 Pa before differential vapour recoil 
becomes a significant surface-disruption mechanism. 

The stability analysis of Palmer (1976) was motivated by the experiments of 
Hickman (1952, 1972, 1976), who observed curious schizoid interfacial behaviour, 
erratic explosive activity, and visible, steady small-scale interfacial convection 
pat.tcms in a wide variety of liquids vaporizing into a partial vacuum. One unique 
feature of the phenomenon that Hickman observed is the large increase in interfacial 
heat and mass transfer that  accompanies the onset of interfacial convection in these 
systems. Subsequent quantitative experimental measurements of evaporative heat' 
transfer rates for triethanolamine under vacuum clearly show (i) that  vapour-recoil 
convection can produce interfacial transport rates which are 20 times greater t'han 
the rates associated with buoyancy-driven convection, itnd (ii) that  the interfacial 
heat-transfer coefficients for thc liquid phase are strong functions of evaporative flux 
and gas-phase pressure (Palmer & Maheshri 1981 ). In  contrast, interfacial transport 
rates associated with free convection via the differential surface-tension or buoyancy 
mechanisms depend on the temperature gradient a t  the interface and show no explicit 
dependence on evaporative flux or gas-phase pressure. In brief, all the observed trends 
in the rate of heat transfcr during evaporation under vacuum are consistent with the 
phenomenological model of natural convection via the differential vapour-recoil 
mechanism. Gnfortunately, no experiments have been done to determine the 
necessary conditions for inducing spontaneous convect,ion by differential vapour 
recoil to provide a quantitative verification of the linear stability theory. Such 
experiments are under way in our laboratory at the present timc. 

In  addition to the high interfacial transport rates, the schizoid interfacial behaviour 
observed by Hickman is especially important. Under most conditions, the evaporating 
interface segregates into two regions of interfacial activity, with portions of the 
surface exhibiting rapid small-scale movement and a substantially increased evap- 
oration rate (which Hickman called working), while the rest of the surface remains 
torpid and stable. The large difference in evaporation rate from the two adjacent 
regions is dramatically revealed by a difference in their surface elevations ( -  2 mm), 
caused by the difference in momentum transfer (recoil force) to the surface by the 
departing vapour. The torpid surface represents a source of inefficiency in the 
evaporation process, and Hickman's experiments show that it is also thc cause of the 
erratic, sometimes explosive, activity and abnormally high degrees of superheat 
( -  60 "C) observed in vacuum distillation processes. 

It is important, to recognize that the spontaneous formation of a schizoid surface 
is observed on a wide variety of liquids of moderate to low surface tension, including 
silicone fluids. For liquids of moderate surface tension we have demonstrated with 
linear stability theory and experiments that the torpid surface is produced by surface- 
active contamination (Palmer 1977). The addition of trace amounts of a surface-active 
solut'c suppresses interfacial convection and induces the schizoid surface, the sizc of 
the torpid regions being proportional to the amount of surface-active solute added 
and to the magnitude of the evaporative flux. On the other hand, for low- 
surface-tension fluids like oils and silicone fluids, Hickman and ourselves have been 
unablc to uncover a specific additive that will induce torpidity on a working surface. 
This is not surprising since low-surface-tension liquids like silicones are highly 
resistant to surface-active contaminants and their stabilizing effects (Palmer 1971). 
Nevertheless, the existence of the schizoid surface on these liquids seems to be due 
to t h e  presence of a chemical artefact in the system, sirice a t.orpid surface can be 
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transformed temporarily into a working surfwe by carefully overflowing (discarding) 
the interfacial layer in an evaporation experiment. 

Our contention is that the extra interfacial stability observed during the va(wum 
distillation of oils and silicone fluids is associated with a c~oncentration-polarization 
phenomenon. All these fluids arc mixtures of chemically similar materials of varying 
molecular weight. During the vaporization process, low-volatility constitucnts tend 
to accumulate near the interface as the higher-volatility components vaporize. As  the 
local concentration of the less-volatile material increases at the interface, the 
evaporation rate is suppressed. Our own preliminary experiments with mixtures of 
two pure, low-surface-tension liquids of different volatility verify that the extent of 
torpidity is indeed dependent on the composition of the mixturc; no torpid region 
is observed in experiments done with each pure liquid separately (Bose 1981). 

Yet, from the point of view of interfacial stability, the presence of stable patches 
on a two-component mixture is entirely unexpected. For example, if we considcr a 
local increase in the evaporative flux, the resultant increase in the recoil force 
depresses the surface locally and exposes the liquid surface to shear by the departing 
vapour. Flow patterns are induced, which bring to this local interfacial disturbanw 
liquid which is not only hotter but also more volatile than the original interfacial 
layer. Both these factors contribute additively to increase further the local evaporative 
flux and thus amplify the original disturbance. Therefore the presence of a second 
component should redurp the intrinsic stability of the system. 

The purpose of the present work is to provide insight into the schizoid interfacial 
phenomena observed when a binary mixture of low surface tension evaporates into 
a partial vacuum. Linear stability theory is used to predict the degree to which the 
second component increases the potential for interfacial convection in such systems, 
and to establish the relevant interrelationships between the physical properties of the 
mixture and its intrinsic stability. The predicted stability criteria are thcn used to 
interpret the schizoid behaviour that is observed experjmentally. 

2. The quiescent system 
Consider the steady evaporation of a binary liquid (A plus €3) a t  rcducwl prcssurcx 

The liquid surface is flat and infinite in lateral extent, and the liquid is unboundcd 
from below. The evaporative flux is a function of both the surface temperature arid 
composition, and at reduced pressures is given by a modified form of thc Hcrtz- 
Knudsen equation which assumes no interaction between species A and B : 

where yA and yB are the mass evaporative fluxes of A and B, E is the evaporation 
coefficient (commonly equal to unity), R is the gas constant, M A  and M ,  are the 
molecular weights of A and B, PA and 1% are their pure-component vapour pressures 
a t  the surface temperature ?;, X and Y denote their mass fractions in the liquid and 
gas phase a t  the surface, and Pv and Tv are the pressure and temperature of the gas 
phase. 

Prior to the onset of convection, the surfarc temperature and composition are 
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assumed to be independent of surface position. As in Palmer (1976, 1977) and 
Maheshri & Palmer (1979), the hydrodynamic stability of the quiescent boundary 
layer adjacent to thc interface is analysed. For simplicity we presume that the 
thickness of this stagnant layer 8 is the thickness of both the thermal and 
concentration boundary layers. This situation is reasonable if the depth of the 
boundary layer is influenced by the intensity of bulk circulation far from the 
interface. 

The steady evaporation rate results in a net liquid flow upwards through this 
stagnant layer. The effect of this bulk flow is to distort the otherwise linear 
temperature and concentration profiles in the quiescent state. The nonlinear nature 
of the quiescent profiles has a significant stabilizing effect under conditions of high 
Prandtl and Schmidt numbers, and therefore its effect has been incorporated into the 
present analysis. The temperature and concentration outside the boundary layer are 
assumed constant. The use of such a ‘broken-line’ profile should not restrict the 
usefulness of this analysis (cf. Palmer 1976). 

All physical properties of the vapour and liquid phases are assumed independent 
of composition and, except for vapour pressure, they are asstlmed independent of 
temperature. In  particular, the coupling between surface-tension gradients (Maran- 
goni instability) and differential vapour recoil is ignored in the present analysis, as 
is the destabilizing influence of an adverse density gradient. In  earlier work, the 
interaction of thermally induced surface-tension variations with local fluctuations in 
evaporative flux was considered extensively for a pure fluid (Palmer 1976) and the 
stabilizing effect of compositional elasticity on vapour-recoil instability was evaluated 
(Palmer 1977). In addition, the rate of cooling of the liquid surface by heat conduction 
in the vapour phase and by the discontinuity in kinetic-energy transfer due to the 
phase change are assumed to be negligible compared with latent-heat effects. 
Furthermore, energy generation by viscous dissipation is ignored because of its 
insignificance in practical situations (cf. Palmer 1976). 

For the quiescent state, the temperature and concentration profiles are 

where T is liquid temperature, r,~* ( = 72 + 7;) is the total mass evaporative flux, z 
is the spatial coordinate normal to the unperturbed vapour-liquid interface and 
increasing into the vapour phase, p is mass density, K is thermal diffusivity, hvap is 
the latent heat of vaporization, C, is the specific heat of the liquid, and 9 is molecular 
diffusivity. Throughout the analysis, the subscript s denotes conditions a t  the 
interface, the asterisk refers to the quiescent unperturbed state, and the subscripts 
L and V refer to the liquid and vapour phases respectively. 

Conservation of linear momentum a t  the free surface for the unperturbed state 

The right-hand side of this equation is the recoil force, which acts toward the liquid 
phase and is seen to increase with the square of the local evaporative flux and with 
decreasing vapour density (or pressure). Consequently the magnitude and thus the 
importance of this vapour-recoil force increases markedly as the overbearing pressure 
is reduced. 
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3. Mathematical formulation 
The linear stability analysis is performed in the usual manner, the infinitesimal 

disturbance being exponential in time and periodic in the planform spatial variables, 
but of arbitrary wavelength. This disturbance is made to  obey the conservation 
equations of mass, momentum and energy, subject to the appropriate boundary 
conditions. 

For simplicity, only stationary modes of instability are considered in the present 
analysis. Oscillatory modes of instability are not expected since the presence of a 
second component does not appear to introduce a competing effect. Regardless of this, 
with the assumption of exchange of stabilities, the analysis defines the necessary 
conditions for interfacial instability. With the system variables perturbed an 
infinitesimal amount from their quiescent values, and with both the real and 
imaginary parts of the time-growth constant set equal to zero, the boundary 
conditions a t  the free surface (i.e. a t  z = B’) become 

pvw; = 7 ’ =  (Z)*..+(”)*x;, ax* 

-pv Vi1 w;--1 a 2  w; = 0, 
P,[v: ,W,-G] [ a z 2  

where k, is the thermal conductivity of the liquid, W is the vertical component of 
velocity, ViI is the surface Laplacian operator and B’ is the deflection of the interface 
in the z-direction from its equilibrium position. Equation (6) relates the perturbation 
in evaporative flux to the perturbation in vapour-phase velocity a t  the interface, (7 )  
is the equation of mass conservation a t  the interface, (8) guarantees continuity of 
tangential velocity, (9) is the normal component of the interfacial momentum 
balance, (10) is the surface divergence of the interfacial momentum balance, and (11) 
is the energy-conservation equation for the interface. 

Unique to this analysis of a binary mixture is (12), which requires continuity of 
flux of the more-volatile component A a t  the interface. In addition, fluctuations in 
the local evaporative flux 7’ are produced by perturbations in both temperature and 
composition (see (6)). If (6) and (12) are combined, we obtain 

where 7% and 7: are the evaporative fluxes that would exist if pure A and B were 
to vaporize into a perfect vacuum a t  the prevailing surface temperature T,*. 
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Careful inspection of (13) reveals how the presence of a second component affects 
the interfacial stability of the system. I n  (13) and its heat-transfer analogue, ( l l ) ,  
negative terms on the right-hand side of the equations represent stabilizing influences 
(effects that counter the auto-amplification of a disturbance) while positive terms 
represent destabilizing effects. 

Recall the mechanism by which spontaneous convection is initiated in this system. 
A local increase in surface temperature and/or surface concentration of species A 
produces a local increase in evaporative flux and thus a local surface depression. 
Convective flows are initiated, by the shearing force of the departing vapour, which 
bring to this portion of surface liquid that is not only hotter but also richer in the 
more-volatile component. Thus, the local evaporative flux is increased still further, 
and the original disturbance becomes self-amplifying. Any factor that moderates the 
local increase in surface temperature or the local increase in surface concentration 
of A a t  surface depressions will stabilize the system. For example, from the 
perspective of heat transfer, the local increase in evaporative flux creates additional 
evaporative cooling, which diminishes the local increase in surface temperature and 
stabilizes the system. The greater the latent heat of vaporization hVap the faster local 
increases in surface temperature are diminished by evaporative cooling, as indicated 
by the negative term in ( 1  1). 

In  an analogous manner, the local increase in evaporative flux increases the rate 
at which species A is removed from the surface, which diminishes the local increase 
in surface concentration of A a t  surface depressions and stabilizes the system. The 
greater the inherent volatility of the mixture (as indicated by the magnitudes of 7: 
and 7;) the faster local increases in surface concentration are diminished by 
evaporative transport, as indicated by the first negative term in (13). However, while 
species A is being removed from the surface by evaporation, bulk flow in the 
unperturbed state is enhancing the transport of A up to the surface. This bulk-flow 
term helps to sustain local increases in surface concentration and thus is a destabilizing 
factor in the system, as indicated by the positive sign in front of the second term 
on the right-hand side of (13). 

Finally, because species A is more volatile than B, the evaporative flux of A 
increases more rapidly with an increase in temperature.t Therefore a local increase 
in surface temperature will always result in a preferential depletion of A relative to 
B a t  the surface. This preferential incrcasc in the evaporative flux of' A a t  surface 
depressions diminishes the local surface concentration of A and stabilizes the system. 
Thc more volatile A is relative to B, the faster local increases in surface concentration 
are diminished by associated increases in surface temperature, as indicated by the 
last term in (13). 

This coupling between composition and temperature fluctuations, as exposed in 
(13), as well as the destabilizing cffect of bulk flow on mass transfer, distinguish this 
stability analysis of a binary mixture from the heat-transfer analogue with a pure 
liquid. In short, the mass-transfer aspects of this problem arc not mathematically 
equivalent to a heat-transfer analogue with a pure liquid. 

Aside from the composition effects on evaporative flux introduccd in (6) ,  the 
equation of continuity of mass flux (12), and the diffusion equation for the 
conservation of species A in the boundary layer, the analysis presented here is 
identical with that presented in an earlier paper (Palmer 1976). For convenience, the 

t I t  may 1 x 2  shown with the aid of ( 1 )  and  ( 2 )  and the ('lausius-('lapryron ryuation tha t  ?y0,/d7' 
IS a h  a) s greater than dr&/aT if' A is morr volatile than B 
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complete set of differential equations and boundary conditions that describe thc 
spatial variation of perturbations in the neutral stationary state are presented in 
dimensionless form in the appendix. The numerous dimensionless groups that appear 
in these equations are defined as follows: 

Hickman number for heat transfer 

Hickman number for mass transfer 

Relative-vaporization number 

Biot number for mass transfer 

Crispation number 

PL P L  

P V  Pv 
Density ratio Np = -, Viscosity ratio Np = -, 

YL , Prandtl number 9 4  = -, Reynolds number i?.& = ~ 

P L  KL 

7 *a 

Schmidt number 9'c = -, VL 
9 

s2g(PL-Pv) Bond number BO = 
(T* 

where v is kinematic viscosity, and all quantities are evaluated a t  interfacial 
conditions. 

The stability limit for the system is defined best in terms of the Hickman numbers 
for heat and mass transfer. Both groups are functions of the evaporative flux and 
the appropriate transfer gradient. Furthcrrnore, they both reflect the relative 
importance of the destabilizing forces of differential vapour recoil and vapour 
viscosity to the stabilizing action of surface tension and diffusive transport. In  ST 
the vapour-recoil forces originate from local variations in surface temperature, while 
for Sx the recoil forces are due to local variations in surface composition. I n  the 
limiting case of XX + 0, the local evaporative flux is independent of composition, 
vapour-recoil forces originate solely from local variations in surface temperature, and 
the mixture behaves as a pure liquid with stability criteria expressed in terms of ST 
alone. On the other hand, if compositional effects dominate over temperature effects 
in a steadily evaporating mixture, then ST % 0 and the stability criteria are 
expressed solely in terms of X X .  

As usual, the stability limit for the system is considered to be the minimum positive 
value of the function iffx (or ST) versus the wavenumber 01 of the disturbance (see 
the appendix for further details). Because the limiting case of a single-component 
liquid evaporating under vacuum has been discussed extensively in a previous paper 
(Palmer 1976), the presentation of results in $ 4  will emphasize the effects of pertinent 
dimensionless groups on the value of the critical Hickman number for mass transfer 
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X;, with ST equal to zero. I n  addition, the coupling between the heat- and 
mass-transfer destabilizing mechanisms will be assessed. The predictions of the linear 
stability analysis will then be used to interpret experimental observations of schizoid 
interfacial behaviour in binary liquids of low surface tension. 

4. Results 
The primary objective of the present paper is to evaluate how the presence of a 

second, volatile component in an evaporating liquid influences its interfacial stability 
a t  reduced pressures. As stated previously, (13) symbolizes the manner in which the 
second component affects the stability limit. In  dimensionless form, (13) becomes 

a t  6 = 0. Recall that, on the right-hand side of the equation, terms that are negative 
represent stabilizing influences while positive terms are destabilizing. Thus increases 
in the relative vaporization number Wu and Biot number B.i will increase the stability 
limit for the system, while increases in the Schmidt number will decrease the stability 
limit. 

The Biot number, relative-vaporization number, and Schmidt number have no 
effect on the Hickman number for heat transfer .#$ when 2' equals zero. Therefore 
the magnitude of their effects on interfacial stability is evaluated by considering the 
limiting case of vapour-recoil convection produced solely by adverse concentration 
gradients. The stability limit for this case is represented by the Hickman number for 
mass transfer 2: with XT set equal to zero. 

The stabilizing effect of the Biot number for this case is illustrated in figure 1. Note 
that the critical Hickman number for mass transfer increases in direct proportion to 
the magnitude of 33; for Biot numbers greater than unity, and that X k  approaches 
a limiting value as the Biot number approaches zero. Physically the Biot number 
reflects the efficiency with which local increases in the surface concentration of species 
A are diminished by associated increases in the evaporative flux of A away from the 
surface. 

The magnitude of the relative-vaporization number Wu reflects the degree to which 
a local increase in surface temperature induces the stabilizing effect of a local 
depletion of the more-volatile component a t  the surface. The greater the difference 
in volatility between the two components, the more accentuated this effect becomes. 
Figure 2 presents the quantitative effect of the relative-vaporization number on the 
critical Hickman number for mass transfer. For values of Wu less than ten, the 
stability criteria seem to be unaffected by selective depletion of the more-volatile 
constituent a t  hot spots on the surface. However, for Wu > 10 the stability limit 
increases sharply, and for WV - lo3 the stability limit approaches infinity. The 
implication is that the system is universally stable to fluctuations in interfacial 
concentration when the difference in volatility between the two components of the 
mixture is sufficiently large. 

The product of Reynolds number and Schmidt number W ' e Y e  reflects the 
importance of bulk flow on mass transfer in the quiescent state. From (14), we infer 
that  this effect is destabilizing. However, this interpretation is contradicted by the 
results presented in figure 1, which show the critical Hickman number for mass 
transfer increasing with increasing Schmidt number. The paradox exists because of 
the complicated way in which the Schmidt number (and bulk-flow effects) enters into 
the analysis. In  addition to (14), the Schmidt number has a significant effect on the 
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Biot number 

FIGURE 1. The influence of Biot number on the stability limit for vapour-recoil convection due t o  
mass transfer. We = l O V ,  Pc = 10, Np = los, Vc = go = 1,  Np = 100, HT = 0, BU = 0. 

10-6 
10-3 1 0 - ~  lo-' 1 10 lo2 103 1 0 4  

Relative-vaporization number 

FIGURE 2. The effect of relative-vaporization number on the stability limit for vapour-recoil 
convection due to mass transfer. We = 10-3, = 10-5, B~ = 1, N~ = 100, 

concentration profile in the quiescent state (see (A8) in the appendix). At large values 
of W e  9,~ the initial concentration profile deviates considerably from a straight line. 
Such nonlinear concentration (and temperature) profiles in the quiescent state are 
known to increase the stability criteria for spontaneous convection (Batchelor 1959). 
The full effect of Schmidt number is shown in figure 3. At low Reynolds numbers the 
Schmidt number is destabilizing, as suggested by (14). However, a t  high Reynolds 
numbers this trend is reversed, with increases in Schmidt number producing increases 

= 10, xp = 108, 
yC = 103 ,  zq, = O. 
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FIQURE 3. The effect of Reynolds number on the Hickman number for mass transfer for vapour-recoil 
convection. .N,, = lo*, %?a = go = 1, Np = 100, Wu = 9% = 10, XT = 0. 

in the stability limit because the quiescent concentration profiles become increasingly 
nonlinear. 

The stabilizing effect of the nonlinear, unperturbed concentration profile may be 
more easily seen by analogy with the heat-transfer aspect of this problem. The 
importance of bulk flow in heat transfer is reflected in the magnitude of the product 
W e  9 4 ,  and its effect on the unperturbed temperature profile is introduced on the 
right-hand side of (A7) in the appendix (compare this with (A8)). The results of the 
analysis are presented in figure 4, with the critical Hickman number for heat transfer 
2$ (with &x = 0) plotted as a function of Reynolds number and Prandtl number. 
The solid lines are the stability predictions of the present analysis while the dotted 
lines are the results of the previous analysis (Palmer 1976), in which the unperturbed 
temperature profile was assumed to  be linear. The difference between the two curves 
a t  high Reynolds numbers represents the extent to which the system is stabilized by 
the effect of bulk on the shape of the quiescent profiles in the boundary layer. 

The effect of the liquid to vapour phase density ratio NP on vapour-recoil 
convection via the mass-transfer mechanism is shown in figure 5. Trends are similar 
to those observed for the heat-transfer mechanism (see Palmer 1976) : the stability 
limit decreases as the density ratio increases, and, for each value of Np, a minimum 
critical Reynolds number exists below which no vapour-recoil convection is possible. 
At any fixed value of Np the range of Reynolds numbers over which vapour-recoil 
convection is possible via the mass- or heat-transfer mechanism depends on the value 
of the Schmidt or Prandtl number respectively, with the range of Reynolds numbers 
increasing with YC or 9 4  (see figures 3 and 4). Because thermal diffusivities for liquids 
are typically two orders of magnitude larger than molecular diffusivities, we expect 
the Prandtl number to be 100 times smaller than the Schmidt number in a given 
system. Under these conditions we discover that, a t  any fixed value of the density 
ratio, vapour-recoil convection via the mass-transfer mechanism can occur over a 
much wider range of Reynolds numbers than convection via the heat-transfer 
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FIQURE 6. The coupling between heat transfer and mass transfer modes of vapour-recoil convection. 
Curve ( a )  is for 9, = gt?i = 1 and curve ( b )  is for W w  = Bi  = 100. Otherwise 98 = l O P ,  9 6  = 10, 
x, = 108, w 8  = 10-5, gt?m = 1, x,' = 100. 

mechanism. (Compare figure 5 with Y c  = lo3 to figure 1 in Palmer (1976) with 
9% = 10.) This result suggests that  at constant evaporative flux (constant ,!%) a 
modest alteration in the overbearing pressure (and thus A',,) can change the dynamics 
of a syst,em from predominantly heat-transfer controlled to mass-transfer controlled. 

Generally, local evaporative flux is a function of both composition and temperature, 
and thus the Hickman numbers for both heat and mass transfer will he non-zero. The 
actual stability limit then will depend on the degree to which these two destabilizing 
effects reinforce each other to crcate differential vapour--recoil forces. A convenient 
way to expose this interaction is to present the stability criteria in terms of a 
normalized Hickman number for heat transfer At'T/&?$ as a function of the 
normalized Hickman number for mass transfer &x/X$, where &'$ is the stability 
limit with At'x = 0 and X $  is the stability limit' with XT = 0. Curve ( a )  in figure 
6 shows the tight) coupling that frequently exists between these two destabilizing 
mechanisms over a wide range of Biot numbers and relative-vaporization numbers. 
In  fact, for 49i = 9~ = 1 the coupling is extremely tight and there is a maximum 
additive contribution bet'ween the two driving forces to- determine the stability limit 
for the system. However, as the stabilizing effect of the relative-vaporization number 
becomes significant, a shift in the preferred wavelength occurs for mass-transfer- 
induced convection, and the cooperation between the heat- and mass-transfer 
mechanisms is reduced significantly. For 49i = Bv = 100 the preferred wavelengths 
for instability via the two mechanisms differ by a factor of two, and a moderate degree 
of decoupling results, as shown in curve ( h )  of figure 6.  

It is apparent from figure 5 and Palmer (1976) that for density ratios less than lo6 
(pressures greater than 50 Pa) vapour recoil is an unlikely mechanism for instability. 
For such systems two other mechanisms assume importance : the moving-boundary 
mechanism (Miller 1973) and the fluid-inertia mechanism (Palmer 1976). Computa- 
tions suggest that the moving-boundary mechanism at vapour-liquid interfaces may 
be important in pgravity environments while the fluid inertia mechanism is 
important at unusually high evaporation rates, such as in sudden-depressurization 
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experiments. Since neither situation seems to apply for typical vacuum-distillation 
processes, the effect of a second component on instability via these mechanisms is 
not discussed here (for details see Bose 1981). 

5. Practical consequences 
I n  addition to establishing the effect of key mass-transfer properties on the 

interfacial stability of our system, one goal of the hydrodynamic-stability analysis 
is to provide insight into the schizoid interfacial behaviour of binary mixtures that 
are resistant to surfactant contamination. To explore the practical consequences of 
the analysis, stability criteria for mixtures of ethyl hexyl phthalate (EHP) in ethyl 
hexyl sebacate (EHS) are computed. All mixtures are assumed to be a t  150 O C  and 
are steadily evaporating into a vapour phase a t  either mmHg pressure. 

Using physical property data estimated from Reid, Prausnitz & Sherwood (1977) 
the relevant dimensionless groups are calculated and presented in tables 1 and 2 
together with predicted stability criteria for vapour-recoil convection. For a 
vapour-phase pressure of lop3 mmHg, the normalized Hickman number for mass 
transfer is only slightly greater than zero for all proportions of E H P  to EHS, and 
heat-transfer effects dominate (see figure 5). Thus the stability criteria in dimensionless 
form are essentially the same as that for a pure liquid. However, the ease with which 
this stability limit is exceeded depends on the steady evaporative flux that is achieved 
during the experiment. The greater the concentration of the less-volatile constituent 
(EHS) in the mixture, the lower will be the steady evaporative flux a t  a fixed bulk 
temperature. Imagine an experiment in which a mixture of E H P  and EHS is steadily 
evaporating. Wherever the less-volatile constituent accumulates, the interface 
becomes virtually stable owing to the practical reduction in the overall evaporative 
flux. These stable patches of interface therefore may co-exist with unstable regions 
in much the same way as torpid regions develop on the surface of high-surface-tension 
liquids contaminated by trace amounts of surfactant (Palmer 1977). 

Although the heat-transfer mechanism determines the conditions for spontaneous 
convection in mixtures of EHS and EHP at a pressure of mmHg, the mass- 
transfer mechanism dominates a t  a pressure of mmHg, as indicated in table 2. 
Note that, a t  this pressure, the critical Hickman number for heat transfer would have 
to be infinite for heat-transfer effects to be significant. As discussed earlier, a modest 
change in the operating pressure can have a profound effect on the predominant 
driving force for vapour-recoil convection and can alter entirely the relative 
importance of key physical properties on the stability limit for the system. 

or 

6. Conclusion 
The present theoretical investigation of the interfacial stability of a binary mixture 

of low surface tension evaporating a t  reduced pressure reveals that the presence of 
a second volatile component may increase significantly the potential for interfacial 
convection in this system, and that the destabilizing effects of surface concentration 
and temperature on evaporative flux are usually additive in determining stability 
limits. In  addition, the stability criterion for convection via the mass-transfer 
mechanism is extremely sensitive to the difference in volatility between the two 
components. If this difference is sufficiently great, the system becomes universally 
stable to fluctuations in surface concentration. Results also indicate that, a t  a fixed 
pressure, vapour-recoil convection via the mass-transfer mechanism can occur over 
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XEHP W e  WV Bi  =@XI=@; =@TI=@$ 
0 1  2.84 x 10-5 8.02 x 10-3 1.51 x lo-' 922 x 10-3 0.99 
0 5  533  x 1 0 - 5  1.53 x 8.3 x 5.01 x lop2 0.95 
0 9  7.79 x 10-5 2.23 x 5.35 x 10-2 2.68 x 0 9 7  
1 .o 840 x 1 0 - 5  1 

TABLE 1.  Vapour-recoil stability limits for the ethyl-hexyl-phthalate-ethyl-hexyl-sebacate system 
at a pressure of mmHg, showing that heat-transfer effects dominate. Nf = 5 x los, YC = lo3, 
BD = 1 ,  gr = Mp = 100, Br = 50. For all compositions =@$ x 7.5 x and 

- - - 

2; x 1.8 x 10-5. 

XE"P W& WV 98; =@; =@$ 
0 1  2.84 x 10-5 8.02 x 10-3 1.51 x lo-' 2.84 x 10-4 co 
0 5  533  x 1 0 - 5  1.53 x 8 3  x 10-2 2.92 x 10-4 co 
0.9 7.79 x 10-5 2.23 x 535 x 10-2 2-93 x 10-4 co 
1 .o 8.40 x 10-5 M 

TABLE 2. Vapour-recoil stability limits for the ethyl-hexyl-phthalate-ethyl-hexyl-sebacate system 
at a pressure of mmHg, showing that mass-transfer effects dominate. Mf = 5 x lo7, YC = lo3, 

- - - 

= 1, V& = 10-5, xp = 100, B& = 50. 

a much wider range of vaporization rates than convection via the heat-transfer 
mechanism. This result suggests that  a modest change in either evaporative flux or 
overbearing pressure can change the dynamics of the system from predominantly 
heat-transfer-controlled to mass-transfer-controlled. 
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Appendix 
The general form of the perturbations in T ,  X ,  u." and P which satisfy the 

linearized equations of mass, momentum, energy and species conservation together 
with the appropriate boundary conditions is 

where 

After non-dimensionalization and with the assumption of exchange of stabilities, the 
conservation equations that define the neutrally stable state of the system become 
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(DZ-aZ)Pv = 0, (A 5) 

(D2-az)PL = 0, (A 6) 

Equations (A 1) and (A 2) are the momentum-conservation equations for each phase, 
(A 3) and (A 4) are the curls of the vorticity equation for each phase, (A 5) and (A 6) 
are the divergences of the momentum conservation equation for each phase, (A 7 )  
is the energy equation for the liquid phase, and (A 8) is the diffusion equation for 
component A in the liquid. 

Similarly, the complete set of non-dimensionalized boundary conditions is as 
follows: a t  5 = 0 

(DZ+a2) (W,- W,) = 0, (A 13) 

- WL DT =- 
W e  Br ’ 

as(--, -a 

a t ( = - l  

WL = DWL = XA = T = 0; 

T, DT, XA are continuous. 

(A 18)-(A 21) 

(A 22)-(A 25) 

I n  (A l)-(A 25) the scaling factors for 6 ,  WL, wv, P, T, XA and B are 6, KL/6 ,  KL,uL/,uv 6, 
,uL KL/aZ,  PT 6, Px 6 and 6 respectively, where KL is the thermal diffusivity of the liquid 
and PT and Px are the gradients in temperature and mass fraction in the liquid at 
the interface. The non-dimensionalized boundary conditions (A 9)-(A 15) derive from 
the equations (6)-(13) for the vapour-liquid interface (i.e. a t  2 = B’), rewritten to 
apply a t  z = 0 with the aid of a Taylor-series expansion for each variable. Equations 
(A 16)-(A 21) require that all perturbations in velocity, temperature and concentra- 
tions approach zero far from the interface. Equations (A 22)-(A 25) guarantee 
continuity of temperature, heat flux, concentration, and mass flux a t  the bottom of 
the boundary layer. 

To obtain a characteristic equation that defines the neutral stationary state of the 
system, the general solution to (A 1)-(A 8) is sought, and then is substituted into the 
boundary conditions (A 9)-(A 25)  to  yield a homogeneous set of linear algebraic 
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equations for the numerous integration constants in the general solution. The 
characteristic equation is generated by requiring that the determinant of the 
coefficient matrix of these algebraic equations be zero. Because the order of the matrix 
is 17 x 17, the characteristic equation is exceedingly large and therefore is not 
presented here. It can bc obtained directly from the authors or from the thesis by 
Bose (1981). 

The final result is an equation that relates the Hickman numbers Xx and XT to 
the arbitrary wavenumber a of the disturbance and to  all the other dimensionless 
groups a t  the condition of neutral stationary instability. Strictly speaking, a can take 
on any value from zero to infinity. In  the results section we present only the minimum 
value of Xx (or XT where appropriate) as a function of a, since this represents the 
practical stability limit for the system assuming that all possible values of a are 
physically realizable. 
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